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Abstract-The nonlinear development of finite amplitude disturbances in mixed convection flow in a heated 
vertical annulus is studied by direct numerical simulation. The unsteady Navier-Stokes equations are 
solved n~e~cally by a spectral method for different initial conditions. The results indicate that the 
equilibrium state of the flow is not unique, but depends on the amplitude and wavenumber of the initial 
disturbance. In all cases, the equilibrium state consists of a single dominant mode with the wavenumber 
kfi and its superharmonics. The range of equilibrium wavenumbers I$ was found to be narrower than the 
span of the neutral curve from linear theory. Flows with wavenumbers outside this range, but within the 
unstable region of linear theory, are found to be unstable and to decay, but to excite another wave inside 
the narrow band. This result is in agreement with the Eckhaus and Benjamin-Feir sideband instability. 
The results also show that linearly stable long and short waves can also excite a wave inside this narrow band 
through nonlinear wave interaction. The results suggest that the selection of the equilib~um wavenumber .$ 
is due to a nonlinear energy transfer process which is sensitive to initial conditions. The consequence of 
the existence of nonunique equilibrium states is that the Nusselt number cannot always be expressed 
uniquely as a function of appropriate dimensionless parameters such as the Reynolds, Prandtl and Rayleigh 
numbers. Any physical quantity transported by the fluid, such as heat and salt, can at best be determined 
within the limit of uncertainty associated with nonuniqueness. This uncertainty should be taken into 
account when using any accurately measured values of the heat transfer rate since it is only one of the 
many possible states for the controllable conditions and geometry. Extrapolating this fact to turbulence, it 
is our opinion, since the time average will depend on the initial condition, it will not equal to the ensemble 
average even for stationary turbulence. This is because that the mean flow is not unique for a given 
Reynolds or Rayleigh number. Consequently, the ergodic hypothesis is not valid. From an application 

point of view, only the time average has physical significance. 

THE study of nonisothermal flows in heated ducts is of 
fundamental importance in engineering applications, 
and has been the subject of many experimental and 
theoretical investigations. The final outcome of most 
of these investigations is a prediction of the Nusselt 
number for different geometries and heating 
conditions. The Buckingham rc theorem implies that 
the Nusselt number may be expressed deter- 
ministically as a function of appropriate dimensionless’ 
control parameters such as the Reynolds, Rayleigh 
and Prandtl numbers. Thus, the results of experiments 
conducted using geometrically similar small-scale 
prototype models can be used to predict the heat- 
transfer rates in real engineering situations. This paper 
demonstrates that the Nusselt number cannot always 
be determined uniquely even if the control parameters 
are fixed uniquely and the flow has reached an equi- 
librium state, due to the possible existence of multiple 
equilibrium states. The implication of the existence 
of nonunique equilibrium states is that any physical 
quantity transported by the fluid, such as heat and 
salt, can at best be determined within the limit of 
uncertainty associated with nonuniqueness. This 
uncertainty can occur even in the laminar flow regime 
after its first bifurcation point. 

Mixed convection flow in a heated vertical annulus 
is used as a model problem to illustrate this uncer- 
tainty principle. It is common practice to treat such 
flows as parallel flows. The parallel flow assumption 
simplifies the analysis considerably, and the velocity 
and temperature fields can be easily predicted as func- 
tions of the transverse coordinate. However, recent 
work has shown that fully developed mixed con- 
vection flows in vertical ducts are highly unstable due 
to thermally induced instabilities [l-4]. The presence 
of instabilities in nonisothermal flows in heated ver- 
tical pipes has been observed experimentally by Han- 
ratty et ai. [q, Kemeny and Somers [6] and Scheele 
and Hanratty [;1. These instabilities lead to significant 
increases in the heat transfer rates above those pre- 
dicted by parallel flow models. When the flow is stably 
stratified, with the buoyancy forces aiding the fluid 
motion, they observed that the initial transition 
resulted in a new equilibria nonparallel flow. 
However, when the flow is unstably stratified, with 
the buoyancy forces opposing the fluid motion, the 
transition to turbulence can be abrupt. Thus, the 
bifurcation is supercritical when buoyancy forces aid 
the fluid motion, and may be subcritical when the 
buoyancy forces oppose the fluid motion. Similar 
instabilities have been observed by Maitra and Subba 
Raju [8] for flow in a heated vertical annulus. They 
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NOMENCLATURE 

A,, initial disturbance amplitude ofnth T,<(r) kth degree Chebyshev polynomial 
Fourier mode r,, upstream reference temperature 

c constant determining average axial T,, temperature of inner wall 
velocity of isothermal flow through 11 radial velocity 
annulus ii discrete Fourier transform of radial 

Li distance between cylinders velocity 
E disturbance kinetic energy II,, radial velocity predicted by linear 
E(k) kinetic energy of Fourier mode with stability theory 

wavenumber k II = (u, c, IV). velocity vector 

e, unit vector in z direction 1‘ azimuthal velocity 

9 gravitational acceleration I:,, azimuthal velocity predicted by linear 
G axial pressure gradient stability theory 
h local heat transfer coefficient LI’ axial velocity 
k axial wavenumber I?,, axial velocity predicted by linear 
k _’ final equilibrium wavenumber stability theory 
k thermal conductivity of fluid W average axial velocity for isothermal 

N number of collocation points in the flow through an annulus 
radial direction W” fully developed axial velocity profile 

NZ number of collocation points in the ? normalized radial coordinate 
axial direction Z axial coordinate. 

NW number of collocation points in the 
azimuthal direction 

NU Nusselt number Greek symbols 
Nu, local Nusselt number fundamental wavenumber 

P pressure ; coefficient of thermal expansion 
PV Prandtl number 

;i 
radius ratio of annulus 

Y>, local heat flux at inner wall dimensionless temperature 
Ra Rayleigh number 4 fully developed temperature 
RCJ Reynolds number distribution 
r radial coordinate Ii thermal diffusivity of fluid 

rl radius of inner cylinder (dimensional) i wavelength of computational box 

1’2 radius of outer cylinder (dimensional) 1’ axial temperature gradient 

I, dimensionless radius of inner cylinder \’ kinematic viscosity of fluid 

y<, dimensionless radius of outer cylinder 7l =(I+f/ul’ 
t time P density of fluid 
T dimensional temperature 4 azimuthal angle 

Th bulk temperature of fluid (11 =vxu. 

also found that the instabilities resulted in heat trans- 
fer rates which were much higher than those predicted 
by a parallel-flow model. The evolution of finite- 
amplitude disturbances in this flow situation was stud- 
ied theoretically by using weakly nonlinear instability 
theory [9]. The results indicate that the bifurcation is 
supercritical when buoyancy forces aid the fluid 
motion and are in agreement with the experiments of 
Maitra and Subba Raju. 

In this investigation the nonlinear development of 
disturbances in mixed convection flow in a heated 
vertical annulus is simulated numerically by solving 
the Navier-Stokes equations using a spectral method. 
The time-dependent NavierrStokes system is solved 
starting with different initial conditions. The results 
show that the equilibrium state depends on the ampli- 
tude and shape of the initial disturbance, and is not 
unique. In all cases the final equilibrium state is a 

monochromatic traveling wave consisting of a single 
dominant mode with a wavenumber k,, together with 
its harmonics, and an induced mean flow distortion. 
The range of equilibrium wavenumbers k, was found 
to be a subset of the linearly unstable band of 
wavenumbers. Flows with wavenumbers outside 
this subset but within the linearly unstable band 
of wavenumbers were found to be unstable and to 
decay, the energy being transferred to a mode with 
wavenumber inside this subset, which is excited 
through nonlinear interaction. This result is in agree- 
ment with the Eckhaus and Benjamin-Feir sideband 
instability [lo]. Numerical simulations starting with 
initial conditions consisting of a single dominant mode 
with wavenumbers lying in the linearly stable range 
also resulted in an equilibrium state with a final domi- 
nant wavenumber k, inside this subset. Similar results 
were obtained for Taylor-Couette flow by Yao and 
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Ghosh Moulic [ 111, using a weakly nonlinear analysis 
with continuous spectrum. They represented the dis- 
turbance by a Fourier integral, and derived an inte-, 
grodifferential Landau equation for the amplitude 
density of the wave-components of a continuous spec- 
trum of waves. Numerical integration of this Landau 
equation showed that the final equilibrium state was 
not unique, but depended on the waveform of the 
initial disturbance and the initial wave amplitudes, as 
observed experimentally [ 12-141. These results suggest 
that the selection of the equilibrium wavenumber is 
due to a nonlinear energy transfer process, which is 
sensitive to initial conditions. 

The consequence of the existence of nonunique 
equilibrium states is that the Nusselt number cannot 
always be uniquely determined as a function of appro- 
priate dimensionless control parameters such as the 
Reynolds, Rayleigh and Prandtl numbers, as implied 
by the Buckingham 71 theorem. Any physical quantity 
such as heat, species, etc., transported by the fluid can 
at best be determined within the limit of uncertainty 
associated with nonuniqueness. This uncertainty can 
not be ignored in practice. 

The numerical results obtained in this investigation 
indicate that nonlinear effects induce a large distortion 
of the mean flow. The kinetic energy of the distorted 
mean flow is found to be the dominant component of 
the disturbance kinetic energy, and much higher than 
the kinetic energy of the fundamental dominant wave 
in the equilibrium state. This implies that classical 
weakly nonlinear theories of monochromatic waves 
[ 15,161 as well as slowly varying wave packets [17-l 91, 
which assume a priori that the mean flow distortion 
is induced by the fundamental wave and is a much 
smaller order effect, are not valid. This is because the 
classical theories are for monochromatic waves, and 
do not consider the nonlinear energy transfer among 
different waves. This drawback can be overcome by 
reformulating the problem with a continuous spec- 
trum [20]. The analysis in [20] is an extension of the 
weakly nonlinear theory of a continuous spectrum of 
stationary waves [I I] to traveling waves. The dis- 
turbance is represented by a Fourier integral over all 
possible wavenumbers. The Fourier components are 
expanded in a series of the linear stability eigen- 
functions. The eigenfunction expansion reduces the 
Navier-Stokes equations to a set of nonlinearly 
coupled integrodifferential equations for the ampli- 
tude density function of a continuous spectrum with- 
out any approximation. The equations describing the 
evolution of monochromatic waves and slowly vary- 
ing wavepackets of classical weakly nonlinear theories 
are special limiting cases of the integrodifferential 
equations in a parameter range close to the onset of 
linear instability with single eigenmode for the waves. 
Comparison with the numerical solution of the Nav- 
ier-Stokes equations, however, indicates that the 
range of validity of the classical weakly nonlinear 
theories is very small. There are cases where the classi- 
cal theories predict qualitatively incorrect results. The 

FIG. 1. Geometry and coordinates. 

solution of the integrodifferential equations with 20 
eigenmodes, on the other hand, agrees with the results 
of the direct numerical simulation of the Navier- 
Stokes equations presented in this paper. This is 
because the integrodifferential equations are equi- 
valent to the Navier-Stokes equations. Thus, the solu- 
tion of the integrodifferential equations is an exact 
solution of the Navier-Stokes equations. The CPU 
time required for the solution of the integrodifferential 
equations is only one-fourth of the CPU time required 
for the direct simulation of the Navier-Stokes equa- 
tions using a Fourier-Chebyshev spectral method in 
this paper, but requires more computer memory. 

2. ANALYSIS 

We consider the flow in a heated vertical annulus, 
driven by an externally applied pressure gradient, as 
illustrated in Fig. 1. A constant vertical temperature 
gradient is maintained at the inner cylinder, and the 
outer cylinder is insulated. Let (r, 4,~) denote cyl- 
indrical polar coordinates, with the z-axis aligned with 
the common axis of the cylinders, and let (u,v, w) 
denote the corresponding velocity components. The 
equations describing the flow are the continuity, Nav- 
ier-Stokes and energy equations. Using the Bous- 
sinesq approximation, these equations may be written 
in dimensionless form as 

Vou = 0 

au c 

whereu=(u,v,w),~=Vxu,n=p+~]~]~,ande, 
is the unit vector along the z direction. All lengths 
have been scaled by the distance between the cylinders, 
d = r2 - r,, where r, is the radius of the inner cylinder 
and r, is the radius of the outer cylinder. Our choice 
of the velocity scale is based on the applied pressure 
gradient, G. For isothermal flow through an annulus, 
the average axial velocity is W = Gd2/(Cpv), where 
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c: = VI--?1) 
l+~2+l+pj 
1-V In q 

q = r,/rZ is the radius ratio of the annulus, p is the 
density of the fluid, and I’ is the kinematic viscosity. 
This provides a natural velocity scale for this problem. 
A nondimensional pressure is defined by 

where p is the (dimensional) pressure fluctuation. The 
time is scaled by d/u’. The temperature of the inner 
cylinder increases linearly with the axial coordinate 
from an upstream reference temperature, To, as 
T,, = To + Fdz, where p is the constant vertical tem- 
perature gradient. In the limiting case of a fully 
developed flow, this simulates a uniform heat flux 
thermal boundary condition on the inner cylinder. A 
dimensionless temperature has been defined by 

T,, - T 0 = ____ 
pd Re Pr 

The parameters in this problem are the Reynolds num- 
ber, Re = Wd/v = Gd’/(Cpv’), the Prandtl number, 
PP = V/K, and the Rayleigh number Ra = p&d”/(w). 

Here a is the coefficient of thermal expansion, K 
is the thermal diffusivity, and g is the gravitational 
acceleration. The boundary conditions are 

u=t.=~=@=O, whenr=r, (2a) 

u=t=u2=0 1 7 

dr 
, whenr = r,,. (2b) 

where ri = r,/d and Y, = r2/d. 

Equations (1) admit a steady parallel-flow solution 

u=r=o, W = W,(r), B = N,(r), (3) 

where the functions W,(v) and O,(r) are solutions of 
the following system of equations : 

d2 WC, 
--If%-RaU,= -C 

dr’ 

d*& 
-+-IdH,+W,,=O 
dr2 ‘rdr ’ 

The stability of this parallel flow may be studied by 
superposing a disturbance on this flow. The finite- 
amplitude evolution of such disturbances has been 
studied by Yao and Rogers [9] using a perturbation 
method. In this study, we solve the system of equation 
(1) as an initial value problem using a spectral method. 
The spatial discretization is based on Fourier expan- 
sions in the axial and azimuthal directions and Cheby- 
shev polynomials in the radial direction. The depen- 
dent variable are represented by expansions of the 
form 

where cc is the fundamental wavenumber in the axial 
direction, T,(y) is the kth degree Chebyshev poly- 
nomial defined by T&J) = cos (k cos-‘~1, .v is a nor- 
malized radial coordinate defined by 

2(r-r,) 
.I’ = ------I, (6) 

r, - r, 

and N,, iv? and Iv, are the nutnber of cohocation 
points in the radial, axial and azimuthal directions, 
respectively. The collocation points are 

j=O,1 N, 1.. ., 

2n - -- 
-I - xN, ’ 

.j = 0, I . . . ..N.-t 

c#~, = $f, ,j = 0,l.. . . N,, - 1. 

This choice of collocation points yields ‘spectral accu- 
racy’ and allows fast transformation between physical 
space and wave space. Time-differencing was done 
using a Crank-Nicholson scheme for the diffusion 
terms and second-order Adams-Bashforth for the 
convection and body force terms. The rotation form 
of the Navier-Stokes equations is preferred for the 
numerical simulations because, as noted by Orszag 
[21], the use of this form guarantees that Fourier 
collocation methods conserve kinetic energy and 
ensures that the nonlinear terms do not cause numeri- 
cal instability. Time-differencing errors are reduced 
by using coordinate system moving with the (approxi- 
mate) phase speed of the fundamental wave, although~ 
because of Gaiilean invariance, this is equivalent to a 
calculation in a frame of reference which is at rest. 
The momentum equations are decoupled by solving a 
Poisson equation for the pressure. The correct bound- 
ary conditions for the pressure, consistent with a 
divergence-free velocity field at the solid boundaries. 
are obtained by an influence matrix technique 122,231. 
The numerical procedure requires the solution of a 
sequence of Helmholtz equations at each time step. 
These equations are solved by a preconditioned mini- 
mum residual method 1241. 

3. RESULTS AND DISCUSSION 

Results have been obtained for an annulus with 
a radius ratio 9 = 0.375, Re = 1000, Ra = 200 and 
Pr = 6. The radius ratio of 0.375 was chosen so that 
the results could be compared with the experiments 
of Maitra and Subba Raju 181. The critical Rayleigh 
number at the onset of instability for this flow con- 
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figuration is Ru, = 89 [9]. Linear stability analysis 
indicates that, at Ra = 200, Re = 1000 and Pr = 6, the 
parallel basic flow is unstable to disturbances with 
wavenumbers lying between 0.23 and 1.13. The time- 
dependent Navier-Stokes system (1) was solved 
nume~cally for different initial conditions. The initial 
conditions used for the computations were of the form 

(r/z,- 1 
u= C A,&(r) einaz 

n= -NJ2 

w:/21--1 

w = W&r)+ C A,&(r)e’“” 
?z= -Iv:/2 

wp- 1 

0 = t?,(r)+ C A,&(r)ei"", 

n= -NJ2 
(8) 

where We and 0,(r) are the fully developed velocity 
and temperature profiles, respectivefy, Ei,, @, and f?” 
are the linear-instability eigenfunctions for an axial 
wavenumber k = m, and A, is the initial disturbance 
amplitude for the mode with wavenumber k = na. The 
computations were done on the Cray C-90 super- 
computer at the Pittsbm~ Su~rcomputing Center. 
In order to minimize the computer time, most of the 
computations were done for the axisymmetric case, 
using c( = 0.25 and N, = 36. Some of the com- 
putations have been done on a finer grid using a = 0.1 
and N, = 96. The asymmetric azimuthal modes are 
linearly stable at the parameters used in this study, 
and, although they can be excited through nonlinear 
interactions, we do not expect this to happen at 
Ra = 200. The validity of this assumption has been 
checked for one of the cases by solving the three- 
dimensional Navier-Stokes system, using eight Four- 
ier modes in the azimuthal direction. The asymmetric 
azimuthal modes were not excited in this compu- 
tation, that is, the flow remained axisymmetric. 
Adequate spatial resolution was ensured by moni- 
toring the kinetic energies of the highest Fourier 
modes. For axisymmetric flow, the kinetic energy of 
the kth Fourier mode is given by 

E(k) = 
1 

* $1 ti(r, 0, k, t) / * + I c;(r, 0, k, t) 1’1 dr (9) 
pi 

for k # 0, and 

E(0) = ; 
s 

” r[/ ii+, 0, 0, t) I* - W: (r)] dr (10) 
‘< 

for k = 0. Equation (9) accounts for the energy in 
both modes &k. The kinetic energy of the fully 
developed flow is subtracted from the mean-flow kin- 
etic energy in equation (10) so that the total dis- 
turbance kinetic energy is given by 

E = c E(k). 
k=O 

(10 
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FIG. 2. Kinetic energy spectrum, illustrating aliasing errors. 

number of Fourier modes can result in an artificial 
curl in the high-wavenumber end of the energy spec- 
trum. This was found to occur in our computations, 
and is illustrated in Fig. 2 which shows the spectrum 
of kinetic energy at time t 5: 800, for a numerical 
simulation using b! = 0.25 in which the mode k = 0.75 
was given an initial amplitude of 0.005 at time t = 0, 
and the other modes were given small initial ampli- 
tudes of lo-“. The spectrum for the aliased cal- 
culation curls upwards at the high wavenumber end. 
In order to get accurate results, we eliminate the ali- 
asing errors by padding, using the two-third rufe [24]. 
The results of the de-aliased calculation at I = 800, 
starting with the same initial conditions, is also shown 
in Fig. 2. The spectra in this case did not exhibit 
the artificial curl at the high wavenumber end. It is 
wor~while to note that, in the de-aliased ~al~lation, 
the energies in the modes k = 0.25, 0.5, 1, 1.25, etc., 
which are not integral multiples of the fundamental 
mode k = 0.75, was negligible. In the aliased calcu- 
lation, on the other hand, all these modes were excited 
due to the afiasing error. This indicates that, in this 
problem, aliasing errors can cause serious problems, 
and need to be eliminated. 

Figure 3(a) shows the evolution of the kinetic 
energy of the dominant wave components for a 

numerical simulation with tl = 0.25 in which the mode 
k = 0.75 was given an initial amplitude of 0.005, and 
the other modes were given small initial amplitudes of 
10-‘O. The mode k = 0.75 is linearly unstable, and 

1 
2.5 

FIG. 3(a). Evolution of the kinetic energy spectrum for a 
single initial mode with wavelength k = 0.75: - . ~~~ Aliasing errors resulting from severe truncation in the k = 0, A k = 0.75, ‘(I k = 1.5. 
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FIG. 3(b). Evolution of the kinetic energy spectrum for a 
single initial mode with wavenumber k = 0.5: ---~ 

Frti. 3(f). Evolution of the kinetic energy spectrum for a 
single initial mode with wavenumber k = I .25 : - k = 0. A 

k = 0, A k = 0.5, V k = 1. k = 0.5, V k = 1, A k = I .25 
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tx10-3 

FIG. 3(c). Evolution of the kinetic energy spectrum for a FIG. 3(g). Evolution of the kinetic energy spectrum for uni- 
single initial mode with wavenumber k = 0.25 : ~ k = 0, V form initial condition with amplitude 0.001 : -- k = 0, A 

k = 0.25, A k = 0.5. k = 0.5, V k = 1. 

grows by obtaining energy from the mean flow. Non- 
linear interactions generate the harmonics k = 1.5. 

2.25 and 3, and induce a mean Aow distortion (k = 0). 

As the amplitude of the mode k = 0.75 increases, non- 
linear effects become more important, and alter the 
linear growth rate, causing the mode to decay and 
eventually reach an equilibrium state. The equilibrium 
state is a monochromatic traveling wave in which the 
fundamental mode k = 0.75 remains the dominant 
mode, while its superharmonics, generated through 
nonlinear interaction, have smaller amplitudes. The 
kinetic energy of the third and fourth harmonics 
(k = 2.25 and k = 3) are much smaller than the ener- 
gies of the fundamental mode k = 0.75, and the 
second harmonic k = 1.5 ; these modes have not been 
plotted in Fig. 3(a). It is worth noting that the kinetic 
energy associated with the mean flow distortion is 
higher than the kinetic energy of the fundamental 
mode k = 0.75. This implies that classical weakly non- 
linear theories, which assume a priori that the order of 
magnitude of the mean flow distortion is smaller than 
that of the fundamental wave, is not valid for this 
problem. In order to check the accuracy of the numeri- 
cal result, the calculation was repeated using a finer 
grid with CI = 0.05, and eight Fourier modes in the 
azimuthal direction. This computation required a lot 
of computer time, and was carried out only to a final 
time t = 500. The result of the computation using the 
fine grid is superimposed on Fig. 3(a). The difference 

4- 
t 1.5 

t” 10-3 

FIG. 3(d). Evolution of the kinetic energy spectrum for a 
single initial mode with wavenumber k = 1 : ~ k = 0. A 

k = 0.5, ‘(I k = 1 

5 

4 

a 3 
x 

5 

Y 2 

I 

2 

1.5 

m 
a 
5 

’ x 

E 

0.5 

0 
0 3 6 9 12 15 

t x 10-3 

FIG. 3(e). Evolution of the kinetic energy spectrum for a 
single initial mode with wavenumber k = 0.2 : V k = 0.2, A 

k = 0.4, __ k = 0. 
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in the two computations can hardly be noticed in the 
scale of Fig. 3(a). This indicates that the coarse grid 
has adequate resolution. It is worth pointing out that 
the energies in the Fourier modes which were not 
integral multiples of 0.75 were negligible, that is these 
modes were not excited. Hence, a computation which 
does not include these modes produces the same result 
as a computation which includes all these modes. 

Figure 3(b) shows the results of a numerical simu- 
lation with tl = 0.25 in which the mode k = 0.5 was 
given an initial amplitude of lo-* and the other modes 
were given initial amplitudes of lo-“. The equilibrium 
state in this case is a monochromatic wave with a 
dominant mode k = 0.5, and its small-amplitude 
super-harmonics. 

Figure 3(c) shows the results of a numerical simu- 
lation with tl = 0.25, starting with a single dominant 
mode with wavenumber k = 0.25 at time t = 0. The 
mode k = 0.25 is linearly unstable, and the weakly 
nonlinear theory of monochromatic waves [15, 161 
predicts a supercritical equilibrium state for this mode. 
However, as indicated in Fig. 3(c), the mode k = 0.25 
grows initially and then decays to zero, while its har- 
monic k = 0.5, excited through nonlinear interaction, 
grows and reaches a finite-amplitude supercritical 
equilibrium state. This indicates that the equilibrium 
state predicted by the weakly nonlinear theory of 
monochromatic waves for the mode k = 0.25 is 
unstable. This result is in agreement with the Eckhaus 
and Benjamin-Feir side-band instability. 

The results of a numerical simulation with tl = 0.25, 
is which the mode k = 1 was given an initial amplitude 
of 0.005, and the other modes were given small initial 
amplitudes of 10e6, is shown in Fig. 3(d). The mode 
k = 1 is linearly unstable and grows initially according 
to linear theory, as nonlinear effects are initially small. 
As its amplitude increases, nonlinear effects become 
important, and cause it to decay. The subharmonic 
mode k = 0.5, excited by nonlinear interaction, grows 
and reaches an equilibrium amplitude which is higher 
than that of the mode k = 1. The mode k = 1 remains 
in the final equilibrium state, but is not the dominant 
mode. This result agrees with the Eckhaus and Benja- 
min-Feir sideband instability. It is worth noting that 
subharmonic transitions such as this may play an 
important role in the transition to turbulence at higher 
Rayleigh numbers. 

Figure 3(e) shows the results of a numerical simu- 
lation with t( = 0.1, in which the mode k = 0.2 was 
given an initial amplitude of 0.005, and the other 
modes were given small initial amplitudes of 10-6. 
The mode k = 0.2 is linearly stable and decays to zero, 
as it transfers energy to the mean flow. However, 
nonlinear effects excite the mode k = 0.4, which grows 
and finally becomes the dominant wave in the equi- 
librium state. This result suggests that nonlinear wave 
interaction may be a credible wavelength adjustment 
mechanism for boundary-layer receptivity, which may 
serve to explain how a short Tollmien Schlichting 

wave in a boundary layer is excited by long-wave- 
length free-stream noise [25]. 

Figure 3(f) shows the results of a numerical simu- 
lation with CI = 0.25, starting with a single dominant 
mode k = 1.25, which was given an initial amplitude 
of 0.005. The mode k = 1.25 is linearly stable and 
decays to zero. However, nonlinear interactions trans- 
fer energy to subharmonic modes, exciting the mode 
k = 0.5, which grows and reaches an equilibrium 
state. The results shown in Figs. 3(e) and 3(I) indicate 
that linearly stable long and short waves can play an 
important role in the transition process from laminar 
to turbulent flow, although they may eventually decay 
to zero, by transferring energy to other modes through 
nonlinear wave interaction. 

Figure 3(g) shows the dominant waves which evolve 
in a numerical simulation with CI = 0.25, starting with 
a uniform broad-band spectrum with initial amplitude 
0.001 at time t = 0. The dominant wave in the equi- 
librium state in this case is the mode k = 0.5, which 
is the wavenumber closest to the minimum critical 
wavenumber at the onset of instability. Numerical 
simulations starting with a uniform initial amplitude 
of 10m6 also resulted in the same equilibrium state. 

The selection of the equilibrium wavenumber is due 
to nonlinear wave interactions. The numerical results 
suggest the selection principles are similar to Taylor- 
Couette flows [ 111 : 

1. When the initial disturbance consists of a single 
dominant wave within the unstable region, the initial 
wave remains dominant in the tinal equilibrium state. 
Consequently, for a slowly accelerating cylinder, the 
critical wave is likely to be dominant. 

2. When the initial condition consists of two waves 
with finite amplitudes in the unstable region, the final 
dominant wave is the one with the higher initial ampli- 
tude. If the two waves have the same initial finite 
amplitude, the dominant wave seems to be the one 
closer to the critical wave. On the other hand, if the 
initial amplitudes are very small, the faster growing 
wave becomes dominant. 

3. When the initial disturbance is a uniform broad- 
band spectrum, the final dominant wave is the fastest 
linearly growing wave, if the initial amplitude is small. 
On the other hand, if the uniform noise level is not 
small, the critical wave is the dominant equilibrium 
one. 

An average Nusselt number has been calculated, 
defined by 

Nu=; ‘Nu,dr, 
s 0 

where 1= 2x1~ is the wavelength of the com- 
putational box, Nu, = hd/R is the local Nusselt 
number, R is the thermal conductivity of the fluid 
and h is the local heat-transfer coefficient, given by 
h = q,J(T,- Tb). Here, qw and T, are the local heat- 
flux and temperature of the inner wall, respectively, 
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Table 1. Variation of Nusselt number with wavenumber 

k, 0.4 0.5 0.75 
NU 4.66 4.74 4.8 

Percentage of increase 8.5 10.4 12.1 

and T,, is the bulk temperature of the fluid. The equi- 
librium values of the Nusselt number are shown in 
Table 1 for different equilibrium states. The increase 
in the Nusselt number due to the flow bifurcation, 
relative to its basic state value, is also shown in Table 
1. As the table indicates, the increase in the Nusselt 
number varies from 8.5% for an equilibrium wave- 
number of 0.4 to 12.1% for an equilibrium wavenumber 
of 0.75. The Nusselt number is plotted in Fig. 4 as a 
function of the Rayleigh number. The results obtained 
by Yao and Rogers [9], using the weakly nonlinear 
theory of monochromatic waves, are shown in Fig. 
4, and compared with the experimental data of Maitra 
and Subba Raju [S]. The variation in the Nusselt num- 
ber for different equilibrium states predicted by the 
direct numerical simulations in the current inves- 
tigation is indicated by the vertical line at Ra = 200. 
The numerical value of the uncertainty in the Nusselt 
number is small for the present case. However, the 
underlying principle has far reaching consequences. It 
is worth pointing out that, in the current problem, the 
linearly unstable range of wavenumbers at 200 

Nu 

P ..,.‘..,.‘.,..‘,.,.‘....’ 
180 180 200 210 220 2M 

Ra 

FIG. 4. Nusselt (Nu) number vs Rayleigh number (Ra) : 
-*- basic state, --- weakly nonlinear theory, -- 
theoretical possible range, .. data range of Maitra and 

Subba Raju [8]. 

4. CONCLUSIONS 

The current investigation demonstrates that the 
supercritical equilibrium state of traveling waves 
bifurcating from fully developed mixed-convection 
flow in a heated vertical annulus is not unique. 
Numerical simulations of the time-dependent Navier- 
Stokes equations with different initial conditions show 
that the final equilibrium state of the flow depends on 
the waveform of the initial disturbance. The results 
suggest that, as the flow evolves from a given initial 
state, it selects an equilibrium wavenumber from a 
possible range of allowed wavenumbers. The selection 
of the equilibrium wavenumber is governed by a non- 
linear energy transfer process which is sensitive to 
initial conditions. The allowed range of equilibrium 
wavenumbers is a subset of the linearly unstable span 
of wavenumbers. An important implication of the 
existence of nonunique equilibrium states is that the 
Nusselt number can be determined only within the 
limit of uncertainty associated with nonuniqueness. 

It is suitable to speculate what the averaging process 
would be for turbulence since the convection has mul- 
tiple solutions in a continuous range of spectra after 
the first bifurcation point. Since the time-average 
mean flow and associated turbulent quantities depend 
on the initial conditions and are not unique, their 
values are not equal to the ensemble averages even for 
stationary turbulence. From an application point of 
view, only the time average has physical significance. 
The ensemble average would be the averaged value of 
the all possible time averages which can be measured 
independently. 
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